傅里叶变换,傅里叶变换和z变换之间的关系

2023-04-13 16:16

1. 傅里叶变换的基本原理

遥感图像像元 DN 值随空间位置变化的特性可用频率来进行描述。DN 值的空间变化频率特征可看作为由具有不同频率、振幅和相位的许多正弦波或余弦波叠合而成的复杂波形。一般而言,短距离内的亮度变化 ( 线条或边缘) 相当于高频波,而长距离或大范围内的变化 ( 背景) 则相当于低频波。

图像的傅里叶 ( Fourier) 变换是空间频率的函数,构成一个描述组成该图像的所有正弦波的频率、振幅与相位关系的频谱 ( 傅里叶谱) 。图像的傅氏变换包含着原图像中的所有信息,不同的是量度的方式。通过傅氏变换,可对原图像数据从频率的角度进行频谱特征调整,并可通过傅氏反变换得到最终图像而实现预期目的。

2. 傅里叶变换的基本性质

傅里叶变换具有线性性质、比例变换性、位移性、周期性、共轭对称性,并服从卷积定理,同时,二维傅里叶变换具有可分离性,即二维傅里叶变换可先后分别沿 x 和 y ( μ和 ν) 两个方向进行运算。

傅氏变换后的傅氏频谱 ( 振幅) 图像是以 | F ( 0,0) | ( 零频相,常称 DC 项) 为中心呈辐射对称的,傅氏频谱图像中任意一点到原点的距离代表该点空间频率的高低,而该点与原点连线的方位角反映了原图像中线性特征信息的方向。

傅里叶变换的公式表如下:

关于傅里叶变幻的介绍如下:

傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。

在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。

傅里叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅里叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。

Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。

三角波的傅里叶变换公式是:f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间。

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。

在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

傅里叶变换是描述信号的需要。只要能反映信号的特征,描述方法越简单越好。信号特征可以用特征值进行量化。

所谓特征值,是指可以定量描述一个波形的某种特征的数值。全面描述一个波形,可能需要多个特征值。比如说:正弦波可以用幅值和频率两个特征值全面描述;方波可以用幅值、频率和占空比三个特征值全面描述(单个周期信号不考虑相位)。

上述特征值,我们可以通过示波器观测实时波形获取,称为时域分析法。

傅里叶变换的目的

傅里叶变换,傅里叶变换和z变换之间的关系

傅里叶变换是一种信号分析方法,让我们对信号的构成和特点进行深入的、定量的研究。把信号通过频谱的方式(包括幅值谱、相位谱和功率谱)进行准确的、定量的描述。这就是傅里叶变换的主要目的。

以上内容参考:傅里叶变换 - 百度百科

傅里叶变换,最牛的算法之一,广泛应用于物理学、信号处理、概率、统计、密码学、声学、光学等领域。有人说,看懂了傅里叶,也就看懂了世界,能改变一个人对世界的认知。

这里我们不深究其中,无数学公式推导,仅为大众简单科普一下傅里叶变换是什么。傅里叶变换最精彩之处就是能够将信号在时域与频域之间进行变换,因此我们先解释一下什么是时域和频域。

①时域

时域(Time domain)是描述数学函数或物理信号对时间的关系,例如一个信号的时域波形可以表达信号随着时间的变化。比如下面这个时域图,1秒内反复振动了5次,频率是5,最大振幅是1,整图描述的是每一个时刻的信号值:

②频域

频域(frequency domain)是描述信号在频率方面特性时用到的一种坐标系,频域图显示了在一个频率范围内每个给定频带内的信号量。上面的时域图用频域表示,则是下图。横坐标表示频率,纵坐标表示振幅。这个图表示:这里面有一段波,频率为5,振幅为1。

另外,频域表示还可以包括每个正弦曲线的相位,以便能够重新组合频率分量以恢复原始时间信号。不同相位决定了波的位置,从频域信息复原到时域信息,相位非常重要。

红色和蓝色正弦波具有θ的相位差

傅里叶变换

先亮一下通用傅里叶公式。(“公式恐惧症”请闭眼滑过...)

傅里叶变换,从定义上讲,表示能将满足一定条件的某个函数表示成三角函数或者它们的积分的线性组合。简单来说,它贯穿了时域与频域,能够将任何形式的周期性信号无限拆解,分为多个有规律的简单正弦波信号。(正弦波是一个圆周运动在一条直线上的投影,所以频域的基本单元也可以理解为一个始终在旋转的圆。)

傅里叶级数方波圆动画

例如下面这种也是有规律的波形,可以拆解为若干组波的叠加。

也就是说,傅里叶变换能够将一段复杂的波,分解成多段规律的、单纯波的集合。然后,对这些规律的波从频域进行描述,就有了整段波的谱线图。

如下图,时域观测的方波信号是若干个正弦信号的叠加,当以时间为横轴时可以看到这些信号累加后得到的时域图像,而换一个角度,当以频率为坐标时,则得到的是一个个不同频率的脉冲。信号从时域到频域的转换,则是傅里叶正变换,从频率到时域的表示则是傅里叶逆变换。因此,时域和频域是以完全不同的角度表示相同的信息。(突然想吟诗一首:横看成岭侧成峰,远近高低各不同...)

很多在时域看似不可能做到的操作,在频域却很容易,这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。例如在图像处理中,低频项决定了图像的整体形状,高频项则提供了细节,通过控制滤波器可以过滤掉不同频率的信息,从而决定输出的图像效果。

相关推荐